
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2021 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Interfaces

 Lambda expressions

 Functional interfaces

 User-defined classes and Iterable

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

Interfaces

 Defines a set of behaviors.

 Classes implement interfaces.

 If a class implements an interface it guarantees that
the methods in the interface will be implemented.

 Cannot call new on an interface but you can declare
interface type variables.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 Each of these vehicles can speed up and slow down (common
behaviors).

 They may do it differently internally but they all can speed up and
slow down.

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

public interface MovingVehicle {

 public void SpeedUp();

 public void SlowDown();

}

 Interfaces specify behaviors but not implementations (no
code for the methods).

 Classes will implement interfaces (give implementations for
the methods).

 If an object implements the MovingVehicle interface then
you know that it has SpeedUp() and SlowDown() methods
defined.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

public class Car implements MovingVehicle

{

 private int m_Speed;

 public int GetSpeed() { return m_Speed; }

 public void SetSpeed(int speed) {m_Speed = speed;}

 public void SpeedUp() {

 // Code for SpeedUp

 }

 public void SlowDown() {

 // Code for SlowDown()

 }

}

Methods on Car

(NOT FROM

interface)

Methods on Car

(FROM

MovingVehicle)

Car implements the

MovingVehicle interface

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

public class Airplane implements MovingVehicle

{

 private int m_Speed;

 public int GetSpeed() { return m_Speed; }

 public void SetSpeed(int speed) {m_Speed = speed;}

 pubilc void SpeedUp() {

 // Code for SpeedUp()

 }

 public void SlowDown() {

 // Code for SlowDown()

 }

}

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 If a class declares that it implements an
interface then it MUST implement ALL
methods in the interface.

 For example, it would be an error if the
Car class only implemented the
SpeedUp() method but not the
SlowDown() method.

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 A class can implement more than one
interface.

 There is no limit to the number of
interfaces that a class can implement.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 Here is another interface:

public interface Hauls

{

 public void Load();

 public void Unload();

}

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

public class Truck implements MovingVehicle, Hauls {

 private int m_Speed;

 public int GetSpeed() { return m_Speed; }

 public void SetSpeed(int speed) {m_Speed = speed;}

 public void SpeedUp()

 { // Code for SpeedUp() }

 public void SlowDown()

 { // Code for SlowDown() }

 public void Load()

 { // Code for Load() }

 public void UnLoad()

 { // Code for Unload() }

}

Methods on Truck

(FROM

MovingVehicle)

Methods on Truck

(FROM Hauls)

Must implement ALL

methods of ALL

interfaces it

implements

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 If a class implements an interface I know
that I can call the methods defined in the
interface on that class.

 Car must have SpeedUp() and
SlowDown() since it implements
MovingVehicle.

 Truck must have SpeedUp() and
SlowDown() since it implements
MovingVehicle.

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 We can design methods that take interface references.

Car c = new Car();

Truck t = new Truck();

TestVehicle(c);

TestVehicle(t);

void TestVehicle(MovingVehicle x)

{

 x.SpeedUp();

 x.SpeedUp();

 x.SlowDown();

}

TestVehicle takes a

MovingVehicle as a parameter.

Any class that implements

MovingVehicle can be passed

as a parameter.

Car implements MovingVehicle

so it can be passed in

Truck implements MovingVehicle

so it can be passed in

Call methods on

the interface

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

mv (MovingVehicle)
SpeedUp()

SlowDown()

t (Truck)
GetSpeed()

SetSpeed(int)
Load()

Unload()
SpeedUp()

SlowDown()

Truck
int m_Speed
GetSpeed()

SetSpeed(int)

Hauls
Load()

Unload()

MovingVehicle
SpeedUp()

SlowDown()

Truck t = new Truck(); // OK

MovingVehicle mv = t; // OK

Hauls h = t; // OK

mv.SpeedUp(); // OK

h.Load(); // OK

t.SetSpeed(10); // OK

Truck t = new Truck();

h (Hauls)
Load()

Unload()

MovingVehicle mv = t;

Hauls h = t;

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

mv (MovingVehicle)
SpeedUp()

SlowDown()

t (Truck)
GetSpeed()

SetSpeed(int)
Load()

Unload()
SpeedUp()

SlowDown()

Truck
int m_Speed
GetSpeed()

SetSpeed(int)

Hauls
Load()

Unload()

MovingVehicle
SpeedUp()

SlowDown()

Truck t = new Truck(); // OK

MovingVehicle mv = t; // OK

Hauls h = t; // OK

mv.SetSpeed(10); // NOT OK!!!

h.SlowDown(); // NOT OK!!!

t.SetSpeed(10); // OK

h (Hauls)
Load()

Unload()

COMPILE ERROR

Hauls does not

have SlowDown()

COMPILE ERROR

MovingVehicle

does not have

SetSpeed(int)

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 Can only call methods on an interface reference that
the interface has in its definition.

 The interface reference itself has to know the method
exists (in interface definition) to be able to call it.

Truck t = new Truck(); // OK

MovingVehicle mv = t; // OK

Hauls h = t; // OK

mv.SetSpeed(10); // NOT OK!!!

h.SlowDown(); // NOT OK!!!

t.SetSpeed(10); // OK

© 2021 Arthur Hoskey. All
rights reserved.

Interfaces

 Classes are allowed to both derive from another class and
implement an interface.

 For example:

interface X { // X interface methods here… }

interface Y { // Y interface methods here… }

class B { // Class B members here… }

class D extends B implements X, Y

{

 // Class D members here…

}

Derives from B and

implements X and Y

© 2021 Arthur Hoskey. All
rights reserved.

Lambda Expressions and
Functional Interfaces

 Now we will cover lambda expressions and functional
interfaces…

© 2021 Arthur Hoskey. All
rights reserved.

Lambda Expression

 A lambda expression is an anonymous method.

 Here is a lambda expression that adds 10 to a number and
returns the result:

 (int a) -> { return a + 10; }

© 2021 Arthur Hoskey. All
rights reserved.

Input

Parameter(s)
Lambda

operator

Expression

The return type is inferred

from the return value (int

in this case)

Lambda Expression

You can do the following with lambda expressions:

 Pass a lambda expression to a method as a
parameter

 Assign a lambda expression to a variable

 Return a lambda expression from a method

© 2021 Arthur Hoskey. All
rights reserved.

Lambda Expression Syntax

 Syntax for lambda expressions:

(int a) -> { return a + 10; }

(a) -> { return a + 10; }

(a) -> a + 10;

a -> a + 10;

() -> System.out.println("No parameters in lambda");

© 2021 Arthur Hoskey. All
rights reserved.

You can omit the parameter data types if you want (it will

figure out the type based on how it is used)

You can omit the braces and return if there

is only one statement in the body

You can omit the parameter parenthesis if there

is only one parameter

You can omit variables if there are no parameters

Functional Interface

Functional Inteface

 An interface with only one abstract method.

interface MyFunctionalInterface

{

 int square(int x);

}

© 2021 Arthur Hoskey. All
rights reserved.

Contains only

ONE method

Functional Interface and Lambda

 The example below declares an instance of the functional
interface and populates it using a lambda expression.

interface MyFunctionalInterface

{

 int square(int x);

}

MyFunctionalInterface mfi;

mfi = (int x) -> { return x * x; };

int result;

result = mfi.square(3);

© 2021 Arthur Hoskey. All
rights reserved.

Declare a variable for

the functional inteface

Assign a lambda expression to

the functional interface variable

Call the method on the square method

on the functional interface

Pass Functional Interface to
Method

 The example below passes a functional interface to a method
which then uses it.

void TestMethod(MyFunctionalInterface x)

{

 int result;

 result = x.square(3);

 System.out.println(result);

}

MyFunctionalInterface mfi;

mfi = (int x) -> { return x * x; }

TestMethod(mfi);

© 2021 Arthur Hoskey. All
rights reserved.

Call the method using the parameter

(MyFunctionalInterface is defined on

the previous slide)

Pass in the functional interface variable

as a parameter to TestMethod

User-defined Classes and Iterable

 Now we will cover how to use the Iterable interface
on a user-defined class…

© 2021 Arthur Hoskey. All
rights reserved.

Review - Iterators

 Here is a collection with data (could be an array):

 Users of the collection may or may not have direct access
to the items of the collection.

 There needs to be a way to “visit” each item of the
collection while not having direct access to it.

 That is what an iterator is for.

Collection

20 40 30 70

User of the collection

may not have direct

access to items it

contains

© 2021 Arthur Hoskey. All
rights reserved.

Review - Iterators

 Iterators are helper classes that have access to the items
of the collection.

 An iterator points at one item of the class.

 In general, you can do the following with an iterator:
◦ Get the data at that item.

◦ Go to the next item in the collection.

◦ Remove the item from that collection.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Making a Class Usable in for-each

 You can design a class so that it is usable in the header of
a for-each.

 Do the following:

1. Implement the Iterable interface.

2. Add an inner class that implements the Iterator
interface.

 For example…

© 2021 Arthur Hoskey. All
rights reserved.

Making a Class Usable in for-each

1. Implement the Iterable interface on collection class…

public class MyCollection implements Iterable<Integer> {

private int[] data = { 10, 20, 30 };

 @Override

 public Iterator iterator() {

 // iterator code goes here…

 }

 public class MyIterator implements Iterator<Integer> {

 // MyIterator code goes here…

 }

}

Note: If the collection contains something other

than Integer use that type instead. For example:

public class MyCollection implements Iterable<Employee> {

…

}

Collection

(an array in this case)

The one and only method

of the Iterable interface.

Should return an Iterator

instance “pointing” into the

collection.

Collection item

data type

© 2021 Arthur Hoskey. All
rights reserved.

Making a Class Usable in for-each

2. Create an Iterator inner class…

public class MyCollection implements Iterable<Integer> {

 private int[] data = { 10, 20, 30 };

 @Override public Iterator<Integer> iterator() { // iterator code goes here… }

 public class MyIterator implements Iterator<Integer> {

 int index = 0;

 @Override

 public boolean hasNext() { … }

 @Override

 public Integer next() { … }

 @Override

 public void remove() { … }

 }

}

Is there another element after

the current element?

Go to the next element of the

collection

Remove the current element

from the collection

Store the index of the element

the iterator is “pointing” at

An inner class has access to

the outer classes member

variables

© 2021 Arthur Hoskey. All
rights reserved.

Making a Class Usable in for-each

 Iterator class implements hasNext()…

@Override

public boolean hasNext() {

 if (index < data.length)

 return true;

 return false;

}

 Iterator class implements next()…

@Override

public Integer next() {

 Integer item = Integer.valueOf(data[index]);

 index++;

 return item;

}

Make sure the index is

“pointing” at a valid element

Create an Integer instance

wrapper to hold the primitive

piece of data

Note: There is no need to use a wrapper

class if the data is already a reference type

Go to next element

Return the item

© 2021 Arthur Hoskey. All
rights reserved.

Making a Class Usable in for-each

 MyCollection implements the iterator() method…

public class MyCollection implements Iterable<Integer> {

private int[] data = { 10, 20, 30 };

 @Override

 public Iterator<Integer> iterator() {

 return new MyIterator();

 }

public class MyIterator implements Iterator<Integer> {

 // MyIterator members (on previous slides)…

 }

}

Create a instance new

instance of MyIterator

(it implements the

Iterator interface).

Return an instance of a class that

implements the interface Iterator

© 2021 Arthur Hoskey. All
rights reserved.

MyCollection – All Code

public class MyCollection implements Iterable<Integer> {

private int[] data = { 10, 20, 30 };

 @Override public Iterator<Integer> iterator() { return new MyIterator(); }

 public class MyIterator implements Iterator<Integer> {

 int index = 0;

 @Override public boolean hasNext() {

 if (index < data.length) return true;

 return false;

 }

 @Override public Integer next() {

 Integer item = Integer.valueOf(data[index]);

 index++;

 return item;

 }

 @Override public void remove() { } // Optional

 }

}

MyIterator inner class

implements

Iterator<Integer>

MyCollection implements

Iterable<Integer>

© 2021 Arthur Hoskey. All
rights reserved.

Making a Class Usable in for-each

 Using your collection class in a for-each…

 MyCollection c = new MyCollection();

 for (int item : c)

 {

 System.out.println("Item is: " + item);

 }

The for expects the collection to implement the Iterable interface:

1. for will automatically call the iterator() method on the

collection (c in this case).

2. The iterator it receives will have next() and hasNext() called on

it automatically.

Collection

item type

Variable name

for current item Collection

instance

© 2021 Arthur Hoskey. All
rights reserved.

Modifier and Type Method Description

boolean hasNext()
Returns true if the iteration has
more elements.

E next()
Returns the next element in the
iteration.

default void remove()
Removes from the underlying
collection the last element returned
by this iterator (optional operation).

Iterator Interface Methods

Taken from:

http://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Note: E is the type of elements returned by the iterator. In the

following example E would be Integer:

public class MyCollection implements Iterable<Integer>

{

}

E would be Integer

© 2021 Arthur Hoskey. All
rights reserved.

http://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#hasNext--
http://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#next--
http://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html#remove--

Modifier and Type Method Description

Iterator<T> iterator()
Returns an iterator over a set of
elements of type T.

Iterable Interface Methods

Taken from:

http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html

© 2021 Arthur Hoskey. All
rights reserved.

http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Iterable.html#iterator()

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Interfaces
	Slide 4: Interfaces
	Slide 5: Interfaces
	Slide 6: Interfaces
	Slide 7: Interfaces
	Slide 8: Interfaces
	Slide 9: Interfaces
	Slide 10: Interfaces
	Slide 11: Interfaces
	Slide 12: Interfaces
	Slide 13: Interfaces
	Slide 14: Interfaces
	Slide 15: Interfaces
	Slide 16: Interfaces
	Slide 17: Interfaces
	Slide 18: Lambda Expressions and Functional Interfaces
	Slide 19: Lambda Expression
	Slide 20: Lambda Expression
	Slide 21: Lambda Expression Syntax
	Slide 22: Functional Interface
	Slide 23: Functional Interface and Lambda
	Slide 24: Pass Functional Interface to Method
	Slide 25: User-defined Classes and Iterable
	Slide 26: Review - Iterators
	Slide 27: Review - Iterators
	Slide 28: Making a Class Usable in for-each
	Slide 29: Making a Class Usable in for-each
	Slide 30: Making a Class Usable in for-each
	Slide 31: Making a Class Usable in for-each
	Slide 32: Making a Class Usable in for-each
	Slide 33: MyCollection – All Code
	Slide 34: Making a Class Usable in for-each
	Slide 35
	Slide 36
	Slide 37: End of Slides

